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Abstract

</ dataset withM items has ¥ subsets anyone of which may be the one fullfiling our objestiwvith a
good data display and interactivity our fantastic pattesoegnition can not only cut great swaths searching
through this combinatorial explosion, but also extracights from the visual patterns. These are the dore
reasons for data visualization. With parallel coordingsdbr. ||-cs) the search for relations in multivariate
datasets is transformed into a 2-D pattern recognitionlprabThe foundations are developed interlaced
with applications. Guidelines and strategies for knowkedigcovery are illustrated on several real datasets
(financial, process control, credit-score, intrusioned&bn etc) one with hundreds of variables. A geo-

metric classification algorithm is presented and appliedamplex datasets. It has low computational

complexity providing the classification rule explicitly @misually. The minimal set of variables required
to state the rule (features) is found and ordered by thediptiee value. Multivariate relations can be
modeled as hypersurfaces and used for decision support. delnod a (real) country’s economy reveals
sensitivies, impact of constraints, trade-offs and ecana@®ctors unknowingly competing for the same

resources. An overview of the methodology provides fouiotal understanding; learning the pattefns

corresponding to various multivariate relations. Thedégpas are robust in the presence of errors and that
is good news for the applications. We stand at the thresHdddeaching the gridlock of multidimensional
visualization.

The parallel coordinates methodology has been appliedligioo avoidance and conflict resolution al-
gorithms for air traffic control (3 USA patents), computesion (1 USA patent), data mining (1 USA
patent), optimization, decision support and elsewhere.

KEYWORDS: Exploratory Data Analysis, Classification for Data Mining , Multidimensional Visu-
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Audience

The accurate visualization of multidimensional problemd anultivariate data unlocks insigths into the
role of dimensionality. The tutorial is designed to provalesh insights for people working on complex
problems.



Half-Day Tutorial

Introductory Level
Lecture notes with annotated visuals and references wiiroeided

Outline

Introduction

Visualization — Insight from Imagescorporating our tremendoymttern recognition into the
problem solving process. Overview of information visuatibn methodologies and examples of
visualization successes in data exploration.

Parallel Coordinates Motivation and definition, point- line duality in 2-D. Mapping multivariate

relations into distinct planar patterns. Comparison witheo visualization methodologies. Inter-
active demos: visual patterns and duality reveal relatiomaultivariate GIS satellite data Fig. 1,
financial data Fig. 2, intrusion detection data Fig. 3.

Linear and near-linear multivariate relations

Multidimensional Lines Their visualization, transformations, mininum distarbmween pairs of
lines in N-dimensionsgollision avoidance in air traffic control (3 USA patents)— demo of real
air traffic conflict scenarios and their resolution.

Planes, Hyperplanes & FlatsVisualization of hyperplanes and detection of coplagatitdus-
trial and commodity markets — buy/sell indicators, risk anaysis. Transformations, approximate
coplanarity.

Data Mining — Multidimensional Detective
Visual data mining (exploratory data analysis - EDA) (USAdPd)

- The case for visualization.

- Information-preserving data display, user interfacegractivity.

- Query Design — atomic and complex queries formed with Baotgzerations.

- Navigating the discovery process fronsual cuesvithout prior hypothesis or biases.
- Interactive exploration on several multivariate dataget® with hundreds of variables)

Automatic Classification — a geometric classification altjon.

- Finds explicit classification rule, displays it as a hypeiate see Fig. 4, and measures the
rule’s precision.

Finds the minimal subset of parameters (features) neediestibe the rule — this is not an
approximation.



- Orders the features by their predictive value.

- Live illustration on real complex datasets e.g. identifyhostile vehicles from afar by their
noise signatures.

- Comparison with 22 well-known classifiers using bench-ndatasets.

- A divide-and-conquer strategy partitioning the datas&t more manageable subsets e.g.
identifying and classifyinglifferent types ofvater mines.

Non-linear multivariate relations — recognition from the visual patterns

Curves

Surfaces & Hypersurfacagpresented byN — 1) planar regions visually revealing the hypersur-
faces’ properties. This representation is preferable done applications even in 3-D Fig. 5-9.

Classes of hypersurfaces — corresponding to classes akaridte relations

1. developables (see Fig. 7) ruled and more general surfaces
2. Viewing convexity in any dimension
3. Non-convex, recognizingfolds, crevices, bumps, dimples (see Fig. 8),swirls and non-

orientable (see Fig. 9).
4. Transformations and their dualities — see Fig. 6

Interior point construction and display algorithms — fédesistates. Applications farocess control
and decision supportFig. 10. Demo constructing\asualmodel of a (real) country’s economy and
interactively finding sensitivities, criticalities, traebffs and discovering that two economic sectors
unknowingly compete for the same resources.

Concentrating Relational Information into Patterns

We are at the threshold of breaking the gridlock of multidirsienal visualization: inputing a mas-

sive dataset and outputing planar patterns — the “graphsiufivariate relations in the data. An

outline of a plan for achieving this together with other @& problems will be presented at the
end.

WEBSITE — www.math.tau.ac.il/ aiisreal
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Figure 1: Ground emissions measured by satellite on a regjiStovenia (left) are displayed on the right.
The water and lake’s edge (middle) are discovered with twerigs.
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Figure 2: Multidimensional contouring query applied to aficial dataset. Quickly reveals interelation-

ships between the variable intervals. Note those for th@dstSP500 (last axis) range and the other
variables.



Figure 3: Detecting Network Intrusion from Internet Traffitow Data. Note the many-to-one relations.

A server (marked on the leftmost axis) is “bombarding” maagvers (shown in the 2nd axis) and there
others examples — how many can you spot?
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Figure 4: In the background is a dataset with 32 variables 2pdtegories. Classifier finds tmene
variablesfeaturesneeded to describe the classification rule with 4% error, @ankkrs these variables

according to their predictive value. On left is plot of firstd variables and on the right the best two
variables after classification.
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Figure 5: Square, cube and hypercube in 5-D

Figure 6: Representation of a sphere centered at the ofgfi) énd after a translation along tkxe axis
(right) causing the two hyperbolas to rotate in oppositeations. Note theotation < translationduality.
In N-D a sphere is represented Hy- 1 such hyperbolic regions — pattern repeats as for hyperahbee.



Figure 7: Note the two dualitiesisp« inflection pointandbitangent plane— crossing point Three such
curves represent the corresponding hypersurface in 4-Baruch.

Figure 8: Representation of a surface with 2 “dimples” (@sgrons with cusp) which are mapped into
pairs of “swirls” and areall visible. By contrast, in the perspective (left) one dim@enidden. On the
right is a convex surface represented by hyperbola-likevggiwith two assymptotes) representation.



Figure 9: Mobius strip representation (left) has two cusipswing that the surface has an inflection point
in 3-D (see Fig. 7 focusp« inflection pointxduality). This together with the upward/downward curves
going to infinity in the same direction shows that the surfiaadosed and non-orientable. The curves and

cusps may merge (right).
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Figure 10: Interior point (polygonal line) constructiongatithm shown for a convex hypersur-
face in 20 - D. A polygonal line touching any of the intermediaurves represents a point on the
surface, and if it intersects one of the curves it represamisxterior point.
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