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Abstract

A dataset withM items has 2M subsets anyone of which may be the one fullfiling our objectives. With a
good data display and interactivity our fantastic pattern-recognition can not only cut great swaths searching
through this combinatorial explosion, but also extract insights from the visual patterns. These are the core
reasons for data visualization. With parallel coordinates(abbr.‖-cs) the search for relations in multivariate
datasets is transformed into a 2-D pattern recognition problem. The foundations are developed interlaced
with applications. Guidelines and strategies for knowledge discovery are illustrated on several real datasets
(financial, process control, credit-score, intrusion-detection etc) one with hundreds of variables. A geo-
metric classification algorithm is presented and applied tocomplex datasets. It has low computational
complexity providing the classification rule explicitly and visually. The minimal set of variables required
to state the rule (features) is found and ordered by their predictive value. Multivariate relations can be
modeled as hypersurfaces and used for decision support. A model of a (real) country’s economy reveals
sensitivies, impact of constraints, trade-offs and economic sectors unknowingly competing for the same
resources. An overview of the methodology provides foundational understanding; learning the patterns
corresponding to various multivariate relations. These patterns are robust in the presence of errors and that
is good news for the applications. We stand at the threshold of breaching the gridlock of multidimensional
visualization.

The parallel coordinates methodology has been applied to collision avoidance and conflict resolution al-
gorithms for air traffic control (3 USA patents), computer vision (1 USA patent), data mining (1 USA
patent), optimization, decision support and elsewhere.

KEYWORDS: Exploratory Data Analysis , Classification for Data Mining , Multidimensional Visu-
alization , Parallel Coordinates , Multidimensional/Mult ivariate Applications
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Audience

The accurate visualization of multidimensional problems and multivariate data unlocks insigths into the
role of dimensionality. The tutorial is designed to providesuch insights for people working on complex
problems.
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Half-Day Tutorial

Introductory Level
Lecture notes with annotated visuals and references will beprovided

Outline

Introduction

• Visualization – Insight from Images: incorporating our tremendouspattern recognition into the
problem solving process. Overview of information visualization methodologies and examples of
visualization successes in data exploration.

• Parallel Coordinates: Motivation and definition, point↔ line duality in 2-D. Mapping multivariate
relations into distinct planar patterns. Comparison with other visualization methodologies. Inter-
active demos: visual patterns and duality reveal relationsin multivariate GIS satellite data Fig. 1,
financial data Fig. 2, intrusion detection data Fig. 3.

Linear and near-linear multivariate relations

• Multidimensional Lines: Their visualization, transformations, mininum distancebetween pairs of
lines in N-dimensions,collision avoidance in air traffic control (3 USA patents)– demo of real
air traffic conflict scenarios and their resolution.

• Planes, Hyperplanes & Flats: Visualization of hyperplanes and detection of coplanarity, Indus-
trial and commodity markets – buy/sell indicators, risk analysis. Transformations, approximate
coplanarity.

Data Mining – Multidimensional Detective

• Visual data mining (exploratory data analysis - EDA) (USA Patent)

– The case for visualization.

– Information-preserving data display, user interface, interactivity.

– Query Design – atomic and complex queries formed with Boolean operations.

– Navigating the discovery process fromvisual cueswithout prior hypothesis or biases.

– Interactive exploration on several multivariate datasets(one with hundreds of variables)

• Automatic Classification – a geometric classification algorithm.

– Finds explicit classification rule, displays it as a hypersurface see Fig. 4, and measures the
rule’s precision.

– Finds the minimal subset of parameters (features) needed todescribe the rule – this is not an
approximation.
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– Orders the features by their predictive value.

– Live illustration on real complex datasets e.g. identifying hostile vehicles from afar by their
noise signatures.

– Comparison with 22 well-known classifiers using bench-markdatasets.

– A divide-and-conquer strategy partitioning the dataset into more manageable subsets e.g.
identifying and classifyingdifferent types ofwater mines.

Non-linear multivariate relations – recognition from the visual patterns

• Curves

• Surfaces & Hypersurfacesrepresented by(N−1) planar regions visually revealing the hypersur-
faces’ properties. This representation is preferable for some applications even in 3-D Fig. 5-9.

• Classes of hypersurfaces – corresponding to classes of multivariate relations

1. developables (see Fig. 7) ruled and more general surfaces.

2. Viewing convexity in any dimension.

3. Non-convex, recognizingfolds, crevices, bumps, dimples (see Fig. 8),swirls and non-
orientable (see Fig. 9).

4. Transformations and their dualities – see Fig. 6

• Interior point construction and display algorithms – feasible states. Applications toprocess control
and decision supportFig. 10. Demo constructing avisualmodel of a (real) country’s economy and
interactively finding sensitivities, criticalities, trade-offs and discovering that two economic sectors
unknowingly compete for the same resources.

Concentrating Relational Information into Patterns

• We are at the threshold of breaking the gridlock of multidimensional visualization: inputing a mas-
sive dataset and outputing planar patterns – the “graphs” ofmultivariate relations in the data. An
outline of a plan for achieving this together with other research problems will be presented at the
end.

WEBSITE — www.math.tau.ac.il/ aiisreal
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EYE-CANDY

Figure 1: Ground emissions measured by satellite on a regionof Slovenia (left) are displayed on the right.
The water and lake’s edge (middle) are discovered with two queries.

Figure 2: Multidimensional contouring query applied to a financial dataset. Quickly reveals interelation-
ships between the variable intervals. Note those for the highestSP500 (last axis) range and the other
variables.
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Figure 3: Detecting Network Intrusion from Internet TrafficFlow Data. Note the many-to-one relations.
A server (marked on the leftmost axis) is “bombarding” many servers (shown in the 2nd axis) and there
others examples – how many can you spot?

Figure 4: In the background is a dataset with 32 variables and2 categories. Classifier finds thenine
variablesfeaturesneeded to describe the classification rule with 4% error, andorders these variables
according to their predictive value. On left is plot of first two variables and on the right the best two
variables after classification.
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Figure 5: Square, cube and hypercube in 5-D

Figure 6: Representation of a sphere centered at the origin (left) and after a translation along thex1 axis
(right) causing the two hyperbolas to rotate in opposite directions. Note therotation↔ translationduality.
In N-D a sphere is represented byN−1 such hyperbolic regions — pattern repeats as for hypercubeabove.
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Figure 7: Note the two dualitiescusp↔ inflection pointandbitangent plane↔ crossing point. Three such
curves represent the corresponding hypersurface in 4-D andso on.

Figure 8: Representation of a surface with 2 “dimples” (depressions with cusp) which are mapped into
pairs of “swirls” and areall visible. By contrast, in the perspective (left) one dimple is hidden. On the
right is a convex surface represented by hyperbola-like (curves with two assymptotes) representation.
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Figure 9: Möbius strip representation (left) has two cuspsshowing that the surface has an inflection point
in 3-D (see Fig. 7 forcusp↔ inflection pointsduality). This together with the upward/downward curves
going to infinity in the same direction shows that the surfaceis closed and non-orientable. The curves and
cusps may merge (right).

Figure 10: Interior point (polygonal line) construction algorithm shown for a convex hypersur-
face in 20 - D. A polygonal line touching any of the intermediate curves represents a point on the
surface, and if it intersects one of the curves it representsan exterior point.
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